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The thermodynamics of interstitial solutions are conceptually different from the 
thermodynamics of substitutional solutions because the state corresponding to pure 
solute is experimentally inaccessible for the interstitial solution. The thermodynamic 
functions for the ideal and regular interstitial solutions are given and expressions for the 
critical point, spinodal curve, solvus, two solid-phase equilibrium, and specific heat are 
derived for the regular interstitial solution. 

1. Introduction 
The concept of the regular solution has proven to 
be a useful one for the understanding of sub- 
stitutional solid solutions because some features 
of their behaviour can be described by this simple 
model [1]. In the regular solution model the 
entropy of mixing is assumed to be ideal and the 
enthalpy of mixing for a binary substitutional 
solution is represented by some simple function 
of the mole fraction of one of the components. 
Essentially similar treatments have been employed 
for interstitial solutions without explicitly con- 
sidering the treatments as regular interstitial 
solutions, for example, the early model for Pd -H  
given by Lacher [2]. The regular interstitial 
solution has been relatively successful for the 
description of some aspects of meta l -H interstitial 
solutions because the H - H  interaction, under free 
surface conditions, has been shown to arise from 
elastic interactions which are long-range [3] and 
may, therefore, be described by mean field theory. 
If  each interstitial H interacts with all of the other 
interstitial H atoms, the interaction can be de- 
scribed by a dependence upon r 2, where r is the 
H-to-metal atom concentration ratio, which is 
similar to the dependence of the enthalpy of 
mixing upon composition for regular substitutional 
solutions. The configurational entropy change for 

H solution is ideal since, in the absence of blocking, 
one H atom can occupy one interstice. This model 
can also be referred to as a mean field-small hard 
core model. Small hard core model implies the 
absence of blocking whereas large hard core means 
that, although only one solute can occupy an 
interstice, the solute can block neighboring inter- 
stices for occupation. In the present thermo- 
dynamic discussion the model will be referred to 
as the regular interstitial solution model without 
specification of the nature of the solute-solute 
interaction. 

The thermodynamic descriptions of interstitial 
solutions have employed mainly partial thermo- 
dynamic properties and a comprehensive, unified 
thermodynamic treatment, such as is available for 
substitutional solutions [1, 4, 5],  is lacking. The 
difference between substitutional solutions and 
interstitial solutions is that in the former solution 
(binary) either pure component can serve as a 
reference state since both are physically realizable, 
but for interstitial solutions the state of pure 
interstitial solute is not physically realizable. For 
example, the state corresponding to pure hydrogen 
is not experimentally accessible for meta l -  
hydrogen interstitial solutions. The purpose of this 
development is to present the thermodynamic 
formalism for the regular interstitial solution and 
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no attempts will be made to make detailed com- 
parisons of the resulting equations with exper- 
imental data. Besides the early work of Lacher 
[2], the regular interstitial solution model has 
been employed by many others, for example, 
Rudman [6] has employed it for metal-H systems 
and Hillert and Jarl for h c p systems [7] ; McLellan 
[8] has also discussed this approximation. How- 
ever, as mentioned above, a comprehensive, 
unified treatment is not available and, due to the 
great recent interest in interstitial solutions, it 
seems timely to present this compendium of the 
thermodynamics of regular interstitial solutions. 

2. General aspects of the thermodynamic 
properties of interstitial solutions 

Since the pure solute state is not generally 
accessible, the logical choice for a standard state 
for the interstitial solution is at infinite dilution. 
For this reason, a more convenient choice for the 
compositional variable is r or 0, where 0 is the 
atom fraction of solute species to interstices 
(occupied and unoccupied). It is also convenient 
to express the integral quantities in ways other where 
than per mole of total components. The following 
treatment will be limited to binary interstitial and 
solutions. 

The mole fraction of solute in the lattice of 
interstitial sites, X1, will be defined by 

X1 - ni _ ni r _ 0, (1) 
ni + nv  13nivl 13 

where ni, n v and n M are the number of moles of 
solute atoms in interstices, the number of moles 
of vacant interstices, and the number of moles of 
solvent (metal) atoms, respectively, and 13 is the 
number of interstices per metal atom. When 
defined in this manner, )(1 = 0 = 1 is, in principle, 
accessible for the interstitial solution and, there- 
fore, this modified definition of mole fraction and 
is more analogous to that for the substitutional 
solution than would be the usual deffmition. 

Integral thermodynamic parameters will be 
designated by subscripts which will also be used 
to designate the species. Some useful integral 
quantities for the general state function, Y, are: 

Y 
Ym - nI + n M ,  (2) 

Y 
Y~ = - - ;  (3)  

BM 

Y 
Yi n1 (4) 

Y 
Y1 - 13riM' (5) 

where m, s, i and 1 are defined by Equations 2 and 
5. These integral quantities are related to each 
other using Equations 1 to 5 by 

Ys = (1 +130) Ym; (6) 

Y1 = O+ Ym; (7) 

Ys = /3111; (S) 

Y1 = OYi.  (9) 

The following general equations relating the 
integral and partial molar thermodynamic par- 
ameters which will be derived are valid for any 
thermodynamic state function, Y: 

Y = n l Y i  +nMY M, (10) 

Y1 = (a Y/anOT, p, n M 

YM = (~ Y/~nM)T,p ,  n I ,  

i.e., subscripts in capitals refer to partial molar 
quantities. When expressed per mole of interstices, 
Equation 10 becomes 

1 
YI = 0YI +~YM.  (11) 

The Gibbs-Duhem equation is 

ni dYi + nM dYM = 0 at constant p, T. (12) 

fr 
d Y  M = - -  r d Y  I (13) 

o o 

which gives 

(0 ;0) dYM = -- YI--  o Yid , (14) 

1 fo 
-s YM = YI(O = 0 ) +  Y I d O - - O Y I  (15) 
P o 

since yO]13 = YI(O = 0). Substitution of Equation 
15 into Equation 11 gives 

I ~ Y1 = Yl (0 = 0) + YI dO (16) 
o 
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from which it follows that 

ri  = (aY1/aO)T,p, nM 
and 

(17) 

1 
-~ YM = Ya--o(aY~IaO)T,p,.M. (18) 

Equations 17 and 18 are equivalent to the method 
of  intercepts for evaluating partial molar quantities 
from integral quantities [1 ].  In a plot of  Y1 against 
0 the tangent intercept if YM and Yx is obtained 
from the tangent slope at 0. 

The ideal interstitial solution is defined with 
respect to the ideal partial configurational entropy 
at a standard pressure p0 and corresponding 
volume V ~ , that is, 

S~d(P ~ V ~ zi) = 

lira [Si(zi) + R In zi] - - R  In z I 
zi---~ O, p ---> p ~ V--+ V ~ 

= S ~ - - R  lnz l ,  (19) 

where z I = 0 / ( 1 - - 0 ) .  The corresponding ideal 
chemical potential is 

uld(p ~ , V ~ , ZI) : 

lira 0 vO[Pi(zi)--RTlnzi] + R T l n z  I 
zi.---~O,p--> p , V--+ 

= po + R T  In z I. (20) 

These definitions are valid under either conditions 
of  constant pressure or constant volume [9].  It  
follows from Equation 20 that 

V1 d = 0, (21) 

which is consistent with the definition of  an ideal 
solution. From Equation 15, 

1 id  1 
= ~ - - R  (22) 

The integral ideal entropy per mole of  interstices is 

S~ d= sO ' i~  

: SO ' id  - - R  [0 In 0 + (1 --  0) in (l  --  0)] .(23) 

The ideal chemical potential of  the metal is given 
f rom Equations 15 and 20 as 

l p ~ = l  o 
- ~ UM + R T  in (1 - -  0)  (24)  

and the integral free energy, G~ d, is obtained from 
Equations 11 ,20 and 24 
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Figure 1 Ideal interstitial solution behaviour: f =  
(#~d_l~)/RT for Curve I ; f =  id id (#M --/~M)/# RT for Curve 
M; f =  (G~ d -- G~)/RT for Curve 1. G~ = u~/RThas been 
chosen as --2 and # has been chosen as 1. 

1 id 
c p  = 0uP  + = 

(lo) OP ~ + -~PM + RT[O in 0 + (1 --  0) In (1 --  0)] .  

(25) 
Fig. 1 shows plots of  (Pld -- pO)/R T, (.p~ -- po) /  
~RT and (a~ a --GO)leT, where G ~ = (1//3)#4, 
and p~ T has been chosen as - -  2. 

3. The thermodynamics of the regular 
interstitial solution 

For regular binary substitutional solutions the 
relative enthalpy of mixing is expressed as 

z~r'/mix = ~ Y I ( 1 - - X 1 ) ,  ( 2 6 )  

where X is a constant, Xa is the mole fraction of  
one of  the components and Z~g/mi x refers to one 
mole of  solution. This definition for the enthalpic 
component  of  the regular substitutional solution 
results from the consideration of  nearest neigh- 
bour constant interaction energies of  pairing [1]. 
It follows from Equation 26 that 

(OZkHmix/bXx)~,,p = X ( 1 - - 2 X a ) ,  (27) 

which has the same dependence upon the com- 
positional variable as the following equation, 

H I = H 0 q- O H I I  , ( 2 8 )  

where /'/IX is an interaction enthalpy coefficient. 
Equation 28 will be used to describe the enthalpic 
component  of  the regular interstitial solution. 
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From Equations 15 and 28 

1 0 2 H ~ 
HM - 2 HI, + - - f  (29) 

is obtained, and, from Equations 16 and 28 this 
gives 

02 1-1] = OH ~ + H~ + (30) /3  -Hn. 
Equations for the chemical potentials and free 

energy of the regular interstitial solution can be 
obtained from the above equations for the en- 
thalpies and from the ideal entropies (Equations 
19, 22 and 23) 

0 
la[ = po +01111 + R T l n ( 1 -  0-----) '  (31) 

1 1 02 
-~ PM = ~ I -t~ -- - f  HH + R T  In (1 - -  0)  (32 )  

and 

1 o )  02 
G, = O/.t~ +~PM +-~-HH 

+RT{O lnO +(1 -- 0) in (1 --0)}. (33) 

Fig. 2 shows plots of ( p , -  #~)/RT, (IZt a _ p o ) /  
/3RT and (G1--G~ where G] ~ =(1//3)p ~ 

and HI I/RT is chosen as --10 and #~ T is chosen 
as - 2  with/3 = 1. It can be seen that there is an 
extensive range where phase separation occurs for 
the solute and this is reflected in values of #M 
which also show an instability range when plotted 
against 0 -1 . The rule of equal areas can be em- 
ployed for (PI - -#~ in order to determine the 
value of this function for the two-phase coexist- 
ence region; alternatively, the rule of equal areas 
can be used in plots of (/.t M -- i.t~l)/RT against O -t 
to determine the value of this function for the 
two-phase coexistence region. The phase boun- 
daries may be located, as shown in Fig. 2, by 
values of 0 corresponding to equal tangents to the 
G1 riot. 

In contrast to some substitutional solutions 
where AVmix can be zero, for interstitial solutions 
it is clear that AV1 must be finite when solute is 
"mixed" with metal atoms. It will be assumed in 
our definition of the regular interstitial solution 
that the solute has a finite partial molar volume 
which is independent of 0, i.e., 1Ii = V~ ). From 
Equation 11, we have 

or  

1 
Vl = 0V ~ +~VM (34) 

v ,  = r V  ? + vM, (35) 

o o.z 0.4 O o6 o8 io 

Figure 2 Regular interstitial solution behaviour where: 
f =  (/~I = #~)/RT for Curve I; f =  (#M - -  #~I)/# RT for 
Curve M; f =  (G1--G~)/RT for Curve 1. G1 ~ = t~ /13 ,  
#3/RT has been chosen as - -2 ,  HII/RT has been chosen as 
- - 1 0  and t3 has been chosen as 1. The broken horizontal  
line has been drawn by the rule of  equal areas and its 
location determined the value of  (/z I - - tz~) /RT for the 
two-phase coexistence region. The location of  the equal 
tangents to Curve 1 determines the coexisting phase com- 
positions. 

3238 

and it follows from a development analogous to 
that which leads to Equation 15 that 

1 1 fO 
~ 

1V~. 
/3 

V ~  dO --  O V o 

(36) 

Therefore, according to this definition of the 
regular interstitial solution, where VI is assumed to 
be independent of O, VM must also be indepen- 
dent of 0. Thus Vegard's law applies if the limiting 
compositions are considered to be 0 = 0 and 
0 = 1; the latter limit is analogous to a mole 
fraction o f  unity for a binary substitutional 
solution. 

3.1. Critical point, spinodal and equation 
of state for the regular interstitial 
solution 

At the spinodal, [a(lli/T)/~O)]Ts = 0 and, there- 
fore, from Equation 31 



[ a  (udr)/a0]r~ - 

and, therefore, 

nii 
R r s  

Ts (1 -- 0s) 

= 0  

Os(1 -- 0s )' 

(37) 

(38) 

where 0 s as a function of T s can be obtained by 
solving Equation 38, that is 

2-1+[1 RT]U~ni~] = -b s 
0s "~-~- [ . 

At the critical point, 

02(~tI/r) - 0 = --R 
002 

(39) 

11 (1 - -  0c) 2 

(40) 
and 0c = �89 From Equation 38 at T s = T c and 
0c = �89 we obtain 

HII = --4RTc. (41) 

Substitution of Equation 41 into Equation 39 
gives 

1 1 (  T,~ 1'2 
0s = -2 +2- 1--T-Tel " (42) 

Since both the spinodal and binodal are sym- 
metrical about 0 = �89 it follows that 0 a + 0 b = 1 
where a and b indicate the phase boundaries 
and 0 b > 0 a .  (Lacher [2] has shown that the 
binodal must be symmetrical about �89 and it 
follows from Equation 39 that the spinodal 
must also be symmetric about �89 At the binodal 
the chemical potentials of each component must 
be equal and, therefore, from Equations 31 and 32 
we have 

0 a H i i  + RTln  ( 0 J ( l  -- 0~) 

= ObHn + RT in 0b/(1 -- 0b) (43) 
and 

(44) 

(45) 

0f 
- -  - - H I I  + R T l n  (1 - - 0 a )  

2 

= -~HI~ +RTlnO --0u). 
2 

From Equations 43 and 44 we obtain 

(0 b - - 0  ~ H I I  = In ( 0 a / 0 b )  
a~ 2RT 

and, employing equation 41, gives 

I ) J ] - -  
LO 
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Figure 3 Spinodal and binodal curves for the regular 
interstitial solution using the same parameters as for 
Fig. 2. B -- binodal curve and S = spinodal curve. 

T/Tc = 2(20a--  1)/ln [0a/(1 - -0a)  ]. (46) 

Fig. 3 shows the spinodal curve (Equation 39) and 
the binodal curve (Equation 46) for the regular 
interstitial solution. 

Equation 45 has been earlier derived by 
Alefield [10] in a different manner and given in 
the form 

M = tanh (--HIIM/4RT), (47) 

where M is analogous to an order parameter and is 
defined as (0 b -- 0a)- 

3.2. Equation of state of the regular 
interstitial solute 

The equation of state of the regular interstitial 
solute will be derived; it is first necessary to intro- 
duce the specific volume occupied by the inter- 
stitial solute which is given by the reciprocal of 
the lattice ratio, 

VI* = 0 -1 (48) 

Note that VI* differs from VI. The latter is the 
partial molar volume of the solute in the solution 
(Equations 34 and 35) and the former is a dimen- 
sionless quantity, the reciprocal of the lattice 
ratio. At constant temperature: 

d/21 = VI e. dp*  = 0 -1 d p * ,  ( 4 9 )  

where p* is the "pressure" for the regular inter- 
stitial solute and it has units of J mo1-1 solute -1 . 
This quantity is the three-dimensional analogue 
of the spreading pressure [11] which has units of 
J m -2  . From Equation 49 we obtain 
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(a/aIl~O)T'P = 0 (aP*/aO)T' p 

= (x*)-'/o (5o) 

where K* is the compressibility of the regular 
interstitial solute. From Equation 31 

1 
(blallbO)T, p = HII + R T  o(1 - o )  

1 , 
= -~(3p /30)T,p. (51) 

From integration of Equation 51 we obtain an 
expression for p*, the equation of state, 

p* = �89 2 - - R T l n ( 1 - - 0 ) .  (52) 

At small values of 0 Equation 52 reduces to an 
equation of the form of the ideal gas law, and the 
compressibility from Equations 50 and 51 is 

(K*) -~ = Hn 02 + RTO[(1--0); (53) 

as 0-~0,  K * - * ~  and as 0-+ 1, K* ~ 0 .  At To, 
K* = 4/HII. An equation similar to Equation 53 
has been derived for metal-H systems [12]. 

From Equation 32 it can be seen that 

1 
(/a M --/.t ~  = --p*. (54) 

Equation 54 also follows from the Gibbs-Duhem 
relation and Equation 49, that is, 

d u u  
- 0 a u i  = - @ * .  (55)  

The chemical potential of the metal is, therefore, 
related to the "pressure" of the interstitial solute 
within the metallic matrix. 

3.3. The  phase change reaction 
With reference to Fig. 2 the phase change repre- 
sents the appearance of the condensed phase from 
the dilute phase without addition of solute. This 
cannot be realized experimentally under iso- 
thermal conditions but, nonetheless, the following 
equations describe such a hypothetical first-order 
phase transition: 

AH(a ~ b) = H~ - - H t  

= (0b --0a)(H ~ + �89 (56) 

a s ( a - ,  b) = (0b --  Oa)S ; (57)  

a G O  -* b) = (0b - -  G ) ( H  ~ + �89 -- TS~ (58) 
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and from Equations 34 and 35 

AV(a ~ b) = (0 b -- 0a) V ~ (59) 

At the critical point all of these quantities vanish, 
as expected for a first-order phase transition, but it 
should be noted that when the phase change 
occurs via reaction with one mole of solute, these 
quantities do not vanish at the critical point. 

The phase change occurs experimentally under 
isothermal conditions via reaction with the pure 
solute species which is generally a diatomic gas, for 
example, I-I2, 02 and N2. The thermodynamics of 
of the phase change via reaction with solute will 
be illustrated with metal-H2 systems, but this 
treatment is applicable to other regular interstitial 
solutions. The reaction of 1-12 to form a hydride 
phase from the H-saturated solution is represented 
by 

�89 (g, 1 atm) h- Mna ~ MHb (60) 
(b --a) (b --a) 

This reaction can be written as 

AG(~H2 + a --> b) = 

AH(~H2 + a ~ b) -- TAS(�89 + a -~ b) 

= RT In p ~  (equilibrium), 

(61) 

where �89 + a-~ b represents Reaction 60. For 
the reactions: 

and 

M + a H  2 2 -+ MHa (62) 

b 
M + ~ H2 ~ MHb (63) 

the free energy changes are /3AG~ and /3AG~, 
respectively. By subtracting the free energy change 
for Reaction 62 from that of Reaction 63, an ex- 
pression for the free energy change of Reaction 60 
can be obtained, 

ac? act 
AG(�89 + a ~ b )  - - -  

(0 b - -  0a)  (0b  - -  0a)  

(0 b __ Oa ) AGH dO 

(64) 

and for the enthalpy and entropy changes, from 
Equations 19 and 28 and Reactions 62 and 63, we 
have 



AH(�89 + a -+ b) - (0b _ 0a) 

= AH ~ + �89 

and 

AHu d O  

(65) 

AS(�89 + a -+ b) - (0b - 0a ) ASH dO 

= AS~. (66) 

Aside from the fact that values given in Equations 
64 to 66 are relative to �89 (g, 1 atm) and those 
in Equations 56 to 58 are not, the former differ 
from the latter only by the multiplicative term 
(0 b - -0a)  -a,  that is, the presence of this term 
prevents the values in Equations 64 to 66 from 
going to zero at the critical point. The constancy 
of values of AH(�89 + a -+ b) often observed for 
me ta l -H  systems over an extended temperature 
range [6, 13] follows from Equation 65 provided 
that the change in heat capacity ACp, is nil and 
provided that the regular interstitial solution is a 
good approximation for the meta l -H system. 

For Reaction 60 the change of volume is given 
by 

AV(�89 + a -+ b) = V~ -- ~ V~2 (1 atm, T). 

(67) 

3.4 .  So l vus  l ine f o r  a regu la r  i n te rs t i t i a l  
s o l u t i o n  

The solvus line is defined as the line relating the 
solute concentrations at which a new phase first 
appears to the temperature. This temperature 
dependence is described by plots of ln a versus 
T -1 where a is the r-value for the solute-saturated 
solution at which the new phase first appears. 
Experimental data for solvus lines are generally 
given in terms of a instead of 0a so this nomen- 
clature will be used here. At equilibrium in the 
region of coexistence of two condensed phases for 
a me ta l -H  solution 

[d(A#H/T)/d(1/T)] a = [d(ApH/T)/d(1/T)] b 

= M/(}H2 + a -+ b), (68) 

where Ap H is the chemical potential of the solute 
relative to a standard state of solute removed from 
the solution. Since the phase compositions are 
functions of temperature, we can write for the a 
boundary: 

[d(Apu/T)/d(1/T)] a = [a(Apu/T)/a(1/T)] a 

+ [2 (Apu/T)/ar] T [dr /d(T- '  )] 

= AH(�89 + a -+ b). 
(69) 

Since [a(Aun/T) /b(1 /T)L  = AHu (at a), we can 
solve for the solvus line slope 

- -Rd  In a/d(T -a ) 

- M-/(�89 + a ~ b) + AHu (at a) 
= = M-/so ]. a 

-~ [~(APH/T)/~r]T 
(70) 

It has been shown by the authors [14] that for 
me ta l -H  systems only in the limit as a -+ 0 does 
AHso I correspond to the decomposition of one 
mole of H in the hydride phase to form one mole 
of  H in the H-saturated metal. 

For the regular interstitial solution Equation 70 
can be reduced to 

- -  AH(~H~ + a --> b) + AH ~ + Huua/(J 
AHsol = 

~ - - a  

Hmi(Oa --�89 

1 ~ HHHOa' 
1 - - 0  a R T  

I4HUa/  
R T  

(71) 

in the limit as 0 a -+ 0 Equation 71 reduces to 
--�89 Thus, in the limit of 0 a -+ 0 for a regular 
interstitial solution the enthalpy change for de- 
composition of one mole of H in the condensed 
phase to one mole of H in the solute-saturated 
solution is -- �89 

Since, at equilibrium the chemical potential of 
the solute must be equal in the hydride phase and 
saturated dilute phase, AGso I = 0. On the other 
hand, the temperature derivative of a solvus free 
energy, d(AGsEol/T)/dT -1 , has been employed to 
determine AHso] (Equation 70, where, more 

E exactly, AGso]=--RTln(a/[3 - a )  instead of 
- - R T l n a .  It can be shown that this is an excess 

solvus free energy [15]. 

AGsEol AGsm id (72) = -- AGso b 

where id AGso I is the ideal solvus free energy. The 
AGso 1 can be obtained from the expression for ,id 

free energy change for the solvus process of de- 
composition of one mole of  H in the hydride 
phase to one mole of H in the saturated solution. 
This is obtained from the sum of the free energy 
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changes for the reverse of Reaction 60, - a / a  ~  
where this value results from Equations 65 and 66, 
because the HHIl term is omitted for the ideal 
change, and from Equation 20, i.e., Ag ~ + 
R T  In ZH, where ZH = a/3 as a -~ 0. Therefore, 

fxasEol = - - R T  In a/~. (73) 

The excess solvus entropy is given by differen- 
tiation of Equation 73 with respect to tempera- 
ture: 

__(OAGEsol/OT)p = ~LSsolE 

= R In a/13 + RT(3 In a/3T)v 

= R In +  -Isol/7". (74) 

For the regular interstitial solution, AHsol/T 
= - - H a H / 2 T  (from Equation 71) and from 
Equation 45, HnH/2T= R in a/(3 in the limit as 
a ~ 0. Therefore, AS~ol = 0 (as a -+ 0) for the 
regular interstitial solution. 

It can also be shown for the regular interstitial 
solution that AVsol=0.  This follows from 
Equations 34 to 36 and from the definition of the 
solvus process. This result leads to the conclusion 
that there should be no effect of a uniform hydro- 
static stress on the solvus composition for a regular 
interstitial solution [ 16 ]. 

3.5. Formation of stoichiometric hydrides 
Standard thermodynamic quantities for hydride 
(stoichiometric) formation refer to the reaction: 

b 
M (pure) + ~ H2 (g, 1 atm) 

= MHb; where b is an integer. (75) 

From the two reactions 

1 
_a)MHa + ~H2 (g, 1 atm) 

(b 

1 (b is an integer); AH(�89 H2 + a -+ b) 
- (b - -  a) MJ-/b (76) 

and 
a 

M(r = 0) + ~ H2 (g, 1 atm) = MHa; AH 2, 
(77) 

where a is not an integer. We can derive an expres- 
sion for AHf(MHb) as follows: 

AH~ -- (b --a)AH(�89 + a-~b)  + ZSJ/a. 

(78) 

For the regular interstitial solution using Equation 
65 and the relation 

{" ~ a 2 HHH 
AHH dr = aAH~ + - -  aHa=o  2 

(79) 
we obtain for AH ~ (MHb) 

= (b --a)AH(�89 a -+ b) + aAH ~ + a--2 Hnn .  
2 3 ' 

(80) 
when a ~ O, AH ~ = bAII ~ + (b/2)HHH = 
bAH(�89 + a ~ b ) .  In order to evaluate AH~, 
therefore, values for the thermodynamic par- 
ameters near r-+ 0 are needed, that is values of 
AH ~ and Hai  1. Alternatively, AH~ values can be 
expressed in terms of the solvus using Equations 
71 and 78 to eliminate &Ha_, b, 

(a -- a2 t HilH aHH---~H 
AH ~ = b A H ~  b 2 ]  (3 - - (b - -a )  3RT 

+ 3 ,M_/sol; (81) 
3 - - a  

when a -+ O, 

~ / o  = b(aHO _ ~qso]). (82) 

In the limit as a-+ 0, HHil is not required; only 
M-/so 1 and 2if/~ are needed. 

3.6. Specific heat for a two-(condensed) 
phase regular interstitial solution 

Equation 30 gives the integral enthalpy which 
can be written for a two-condensed phase co- 
existence region as 

0 b - - 0  0 - -0  a 
H1 - 0b - 0 .  + ( 8 3 )  

where the coefficients in front of the enthalpy 
terms are the fractions of the solution in the 
two phases and 0 = 0 a + 0 b. Equation 83 can be 
rewritten for the regular interstitial solution using 
Equation 30 so that 

1-I1 = OH ~ + ~  ~ [0--0a(1  --0a)l (84) 

and 
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H ?  = HI - O - e n  �9 r 

= Hi___!I [ 0 ( 1 - - 0 ) - - 0 . ( 1  - - 0 . ) 1 ,  (85) 
2 

where it can be seen that  H1 e is defined as the 
enthalpy arising from the coexistence of  the 
two phases, that  is, the enthalpy difference 
between a two-phase mixture at overall solute 
content  0 and the enthalpy of  a single phase of  the 
same content .  The excess heat  capacity corre- 
sponding to H~, is given by 

C? = dHf  / d T  = HI-! (20 a - -  1) d0__~a 
2 dT 

_ H n c 9 o  - 1) d0~ 
- -  \ - - v .  

2Te d(T/T~) 

= - -  2R (20.  - -  1)[dOa/d(T/Te)].  (86) 

Using Equation 46 to evaluate dOa/d(T/T~) we 

obtain 

- -4 (20  a --1)2 0a(1 - -  Oa)(TelT)  2 

C?/R = 40a(1 - -  Oa)(Tc/T ) -- 1 

= - - M  2 (1 -- M =)(Te /T)  = (87) 

(1 - - M Z ) ( T e / T ) - -  1 ' 

where M =  20 a -  1 and from Equation 9, 
C e = C~/O where Ci c is the heat  capacity arising 
from the existence of  the two phases per mole of  
solute. Fig. 4 shows a plot  of  C~[R against T/T~ 
for 0 = �89 (for the regular interstit ial solution 

0 = 1, but  for real systems it can be less than 1). 

I I I i 

g- 

o - - -  

o o,z o.4r/r: o,e 08 l.o 

Figure 4 Excess heat capacity arising from the coexist- 
ence of two phases employing Equation 85. 

When values of  C for s o l i d - H  systems are con- 

sidered for the two-phase coexistence region this 

effect should be allowed for but  most workers 
have not  done so, for example,  see Nace and Aston 

[17] ;  however, recently, Heibel etal .  [18] have 
derived an equation similar to Equation 87 in order 
to explain two-phase heat  capacity data for N b - H .  
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